Quick Start
A five‑minute tour: load immunarch, get example data, run core analyses, and ingest AIRR data with the bundled immundata tools.
1) Load the toolkit
library(immunarch)
2) Get example data and set a grouping
# Small demo dataset
idata <- get_test_idata() |> agg_repertoires("Therapy")
# Print a compact summary
idata
3) First‑look analyses
# Gene usage (e.g., V gene)
airr_stats_genes(idata, gene_col = "v_call") |> vis()
# Publicity / overlap
airr_public_jaccard(idata) |> vis()
# Clonality (proportion bins)
airr_clonality_prop(idata)
# Diversity (evenness)
airr_diversity_pielou(idata) |> vis()
4) (Optional) Annotate clonality per receptor and plot in Seurat
# Add per‑receptor clonality labels
idata <- annotate_clonality_prop(idata)
# Copy labels to a Seurat object by barcode and color UMAP
# (Assumes you created `sdata` earlier in your workflow)
sdata <- annotate_seurat(idata, sdata, cols = "clonal_prop_bin")
Seurat::DimPlot(sdata, reduction = "umap", group.by = "clonal_prop_bin", shuffle = TRUE)
5) (Optional) Ingest AIRR data with the bundled data layer
immundata ships with immunarch. You can call its readers directly for flexible ingestion.
# Read AIRR TSVs (toy example)
md_path <- system.file("extdata/tsv", "metadata.tsv", package = "immundata")
files <- c(
system.file("extdata/tsv", "sample_0_1k.tsv", package = "immundata"),
system.file("extdata/tsv", "sample_1k_2k.tsv", package = "immundata")
)
md <- read_metadata(md_path)
idata <- read_repertoires(
path = files,
schema = c("cdr3_aa", "v_call"),
metadata = md
)
# Continue with immunarch analyses
idata |> agg_repertoires("Therapy") |> airr_clonality_prop()
Next steps
- Explore our detailed Tutorials.